Muscle-bone relationships in mice selected for different body conformations.
نویسندگان
چکیده
Some muscle-bone relationships were studied in terms of gastrocnemius muscle weight, femur and tibia length and femur and tibia weight in four lines of mice (CBi-, CBi+, CBi/L and CBi/C) artificially selected for different body conformations and in the unselected control line (CBi). CBi- (low body weight--short tail) and CBi+ (high body weight--long tail) lines were divergently selected following the positive genetic correlation between body weight and tail (skeleton) length (agonistic selection). In contrast, CBi/L (low body weight--long tail) and CBi/C (high body weight--short tail) were also divergently selected but against the aforementioned correlation (antagonistic selection). The relationship between bone length and muscle weight was interpreted based on the assumption that the increased tension generated by the longitudinal growth of a bone, brings about an increase in the mass of the muscles attached to it. All CBi+, CBi/C and CBi/L mice showed enlarged femurs and tibias, but only those genotypes simultaneously selected for high body weight (CBi+ and CBi/C) showed heavier muscles than controls. The CBi+ and CBi- genotypes with agonistic selection differ in bone length and muscle weight, as it would be expected of the allometric modification of their body conformation, showing the associated longitudinal bone growth-muscle growth. CBi/C and CBi/L mice, with a non-allometric modification of body conformation, exhibited the same bone length but different muscle weight. Consequently, the antagonistic criterion allowed to confirm that the genetic influence on of the proposed muscle-bone relationships could be modified, thus making it possible to lengthen the bone through selection of a long skeleton and to avoid the correlated effect on muscle mass, by selecting for a low body weight, bringing forth presumptive evidence that both processes were genetically independent.
منابع مشابه
SPIO-Annexin V, a potential probe for MRI detection of radiation induced apoptosis
Background: Finding a suitable method for rapid, accurate and reliable estimation of absorbed dose has high priority in management of the radiation exposed persons. Shortly after radiation exposure, apoptosis is a major detriment in proliferative tissues such as the hematopoietic system. Therefore, quantification of apoptosis in these tissues could be useful for rapid estimation of radiation ex...
متن کاملMass Attenuation Coefficients of Human Body Organs using MCNPX Monte Carlo Code
Introduction: Investigation of radiation interaction with living organs has always been a thrust area in medical and radiation physics. The investigated results are being used in medical physics for developing improved and sensitive techniques and minimizing radiation exposure. In this study, mass attenuation coefficients of different human organs and biological materials such as adipose, blood...
متن کاملCitrus extract protects mouse bone marrow cells against gamma-irradiation
With respect to radiation damage to humans, it is important to seek possible radioprotectants to modify the normal response of biological systems to radiation-induced toxicity or lethality. For this reasons, the search for less-toxic radiation radioprotectants has spurred interest in the development of different compounds. The radioprotective effects of citrus extract were investigated by using...
متن کاملCitrus extract protects mouse bone marrow cells against gamma-irradiation
With respect to radiation damage to humans, it is important to seek possible radioprotectants to modify the normal response of biological systems to radiation-induced toxicity or lethality. For this reasons, the search for less-toxic radiation radioprotectants has spurred interest in the development of different compounds. The radioprotective effects of citrus extract were investigated by using...
متن کاملPreparation and biodistribution study of 99mTc-EC-Annexin-SPIO as a tracer of radiation induced apoptosis in mice model
Introduction: Apoptosis is a major consequence of ionizing radiation in proliferative tissues and quantification of the apoptotic cells could be helpful for noninvasive assessment and estimation of the radiation absorbed dose. Annexin V conjugated with super paramagnetic iron oxide nanoparticles (ANX-SPIO) is a biological probe for detection of apoptotic cells using magnetic resonance imaging. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of musculoskeletal & neuronal interactions
دوره 4 1 شماره
صفحات -
تاریخ انتشار 2004